\(\int \frac {(a+b \cos (c+d x))^2 (A+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [686]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 154 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {4 a b (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (b^2 (3 A+C)+a^2 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

-4*a*b*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(b^2*
(3*A+C)+a^2*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2
/3*A*(a+b*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+8/3*a*A*b*sin(d*x+c)/d/cos(d*x+c)^(1/2)-2/3*b^2*(A-C)*si
n(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3127, 3110, 3102, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (a^2 (A+3 C)+b^2 (3 A+C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {4 a b (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[In]

Int[((a + b*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-4*a*b*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (2*(b^2*(3*A + C) + a^2*(A + 3*C))*EllipticF[(c + d*x)/2, 2])/(
3*d) + (8*a*A*b*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) - (2*b^2*(A - C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)
 + (2*A*(a + b*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3127

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n
 + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2
*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {(a+b \cos (c+d x)) \left (2 A b+\frac {1}{2} a (A+3 C) \cos (c+d x)-\frac {3}{2} b (A-C) \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {4}{3} \int \frac {\frac {1}{4} \left (-4 A b^2-a^2 (A+3 C)\right )+\frac {3}{2} a b (A-C) \cos (c+d x)+\frac {3}{4} b^2 (A-C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {8}{9} \int \frac {-\frac {3}{8} \left (b^2 (3 A+C)+a^2 (A+3 C)\right )+\frac {9}{4} a b (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-(2 a b (A-C)) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{3} \left (-b^2 (3 A+C)-a^2 (A+3 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {4 a b (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (b^2 (3 A+C)+a^2 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {8 a A b \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}-\frac {2 b^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+b \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.79 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.70 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {12 a b (-A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 \left (b^2 (3 A+C)+a^2 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {12 a A b \sin (c+d x)+b^2 C \sin (2 (c+d x))+2 a^2 A \tan (c+d x)}{\sqrt {\cos (c+d x)}}}{3 d} \]

[In]

Integrate[((a + b*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(12*a*b*(-A + C)*EllipticE[(c + d*x)/2, 2] + 2*(b^2*(3*A + C) + a^2*(A + 3*C))*EllipticF[(c + d*x)/2, 2] + (12
*a*A*b*Sin[c + d*x] + b^2*C*Sin[2*(c + d*x)] + 2*a^2*A*Tan[c + d*x])/Sqrt[Cos[c + d*x]])/(3*d)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 19.66 (sec) , antiderivative size = 747, normalized size of antiderivative = 4.85

method result size
parts \(\text {Expression too large to display}\) \(747\)
default \(\text {Expression too large to display}\) \(871\)

[In]

int((a+cos(d*x+c)*b)^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2*(A*b^2+C*a^2)/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-2/3*A*a^2*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*c)^2*cos(1
/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2)))*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d-2/3*b^2*C*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/
2*c)^2)^(1/2)*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d-4*A*a*b*(-2*cos(1/2*d*x
+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1
/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^
2-1)^(1/2)/d+4*C*a*b*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*
cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.58 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-6 i \, \sqrt {2} {\left (A - C\right )} a b \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 6 i \, \sqrt {2} {\left (A - C\right )} a b \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-i \, {\left (A + 3 \, C\right )} a^{2} - i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, {\left (A + 3 \, C\right )} a^{2} + i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (C b^{2} \cos \left (d x + c\right )^{2} + 6 \, A a b \cos \left (d x + c\right ) + A a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/3*(-6*I*sqrt(2)*(A - C)*a*b*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) +
I*sin(d*x + c))) + 6*I*sqrt(2)*(A - C)*a*b*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co
s(d*x + c) - I*sin(d*x + c))) + sqrt(2)*(-I*(A + 3*C)*a^2 - I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstrassPInvers
e(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*(A + 3*C)*a^2 + I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstra
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*(C*b^2*cos(d*x + c)^2 + 6*A*a*b*cos(d*x + c) + A*a^2)*sqr
t(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**2*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 3.05 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.20 \[ \int \frac {(a+b \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {C\,b^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,C\,a\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,A\,a\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x))^2)/cos(c + d*x)^(5/2),x)

[Out]

(C*b^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*A*b^2*ellipticF(c/2
 + (d*x)/2, 2))/d + (2*C*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*C*a*b*ellipticE(c/2 + (d*x)/2, 2))/d + (2*A*a
^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) +
 (4*A*a*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/
2))